Перейти к содержимому

II. Конструкция автомобиля и его поведение на дороге



Тормозная система


Разделение тормозных контуров

Сейчас тормозные приводы на всех легковых автомобилях выполняются по двухконтурной схеме, которая помогает остановить машину при разрыве тормозного шланга или других неисправностях гидропривода. Существуют три основных схемы разделения контуров. В первом один контур действует на тормоза передней оси, а второй — на заднюю ось («Жигули», «Волга», УАЗ). Недостаток ее вытекает из того, что передняя ось обеспечивает 60-70% тормозных сил, а задняя — только 30-40. При выходе из строя первого контура тормозной путь удлиняется почти втрое. Вторая схема — диагональная (переднеприводные ВАЗы, Иж2126, «Таврия»). Один контур действует на правое переднее и левое заднее, а второй — на левое переднее и правое заднее. При неисправности любого из контуров тормозной путь увеличивается вдвое и вдобавок машина норовит развернуться. Третий вариант заключается в том, что первый контур действует на все колеса, а второй только на передние и обеспечивает 2/3 тормозного усилия передних колес («Москвич», «Нива»). В результате при отказе первого контура тормозной путь увеличится примерно на треть, а при неисправности второго — тоже на треть при нормальном торможении и всего на 10% при торможении на «юз» . Таким образом, эта схема наиболее безопасная. Расплачиваться за это приходится сложными и дорогими суппортами.

Регулятор тормозных сил («колдун»).

Клапан, отслеживающий перемещение кузова относительно заднего моста. Самый короткий тормозной путь у машины тогда, когда все колеса находятся на грани блокировки. Это значит, что распределение тормозных сил должно соответствовать нагрузке на осях. Но реальное распределение веса зависит от загрузки машины, а также от перераспределения веса при «клевке» в начале торможения (передние колеса дополнительно нагружаются, а задние, наоборот, разгружаются).

Когда клапан срабатывает, давление в задних тормозах растет гораздо медленнее, чем в передних, что не дает задним колесам сорваться на «юз» . Регулятор улучшает устойчивость при торможении на сухом асфальте, но практически не проявляет себя на льду: замедление невелико и «клевок» будет несильным. Соответственно задняя часть кузова не поднимается и клапан не срабатывает.

Если задок машины был приподнят с помощью усиленных пружин или проставок нужно отрегулировать «колдун», иначе задние тормоза не будут работать.

Вентилируемые тормозные диски

Чтобы автомобиль мог затормозить нужно перевести кинетическую энергию движения автомобиля в другие виды энергии — потенциальную (например, въехать на холм) или тепловую. Преобразование в тепло в основном выполняют силы трения — между колесами и дорогой, между тормозными колодками и диском.

Современные тенденции развития тормозных систем говорят о постепенном уходе от барабанных тормозов и переходе к дисковым, причем все большего диаметра. Объяснение в том, что требуется переводить в тепло все больше энергии за все более короткое время.

При нажатии на педаль тормоза диск и колодки от трения нагреваются до высоких температур и, если их не охлаждать, возникает целый ряд негативных факторов. Во-первых, чрезмерный нагрев колодок приводит к тому, что входящие в их состав компоненты начинают плавиться и испаряться, создавая между тормозным диском и колодкой тонкую пленку. Ее появление приводит к значительному уменьшению трения, а значит, снижению эффективности работы тормозов. Во-вторых, повышение температуру плохо влияет на тормозную жидкость, которая вскипает и вызывает отказ всей системы. В-третьих, из-за перегрева диск деформируется. Кроме того, при большой температуре фрикционный слой тормозных колодок интенсивно изнашивается.

Обычные тормозные диски делаются цельными, без каких-либо отверстий. Вентилируемые же имеют внутри вдоль рабочих стенок (поверхностей трения) каналы, специально предназначенные для циркуляции воздуха, что повышает отвод тепла. Однако такой диск в 2-3 раза толще обычного и несколько тяжелее. Чтобы избежать этого делают перфорацию диска — сверлят сквозные отверстия перпендикулярно плоскости диска. Еще один способ — нарезание канавок. При этом в процессе фрезерования с диска убирается меньше металла и, следовательно, не уменьшается такой важный для тормоза показатель, как теплоемкость.

Вентилируемые диски обычно устанавливаются на передние колеса, так как при торможении на них приходится большая часть нагрузки и нагреваются они сильнее.

Антиблокировочная система (АБС, ABS)

Водители-асы, чтобы не потерять управляемость автомобиля, применяют в экстренных ситуациях прерывистое или ступенчатое торможение. Но не каждый «средний» водитель может в условиях стресса отказаться от естественного рефлекса нажать педаль тормоза «в пол» и вместо этого заставить ногу мелко дрожать и поэтому эту задачу возлагают на электронику.

Типичная АБС состоит из электронасоса, аккумулятора давления, электронного блока управления, датчиков контроля вращения колес и блока электромагнитных клапанов. Как только какое-нибудь колесо начинает проскальзывать, система сбрасывает давление в тормозной системе, колесо на какой-то момент разблокируется, скольжение прекращается, и все начинается сначала — давление в системе начинает расти до тех пор, пока снова колесо не окажется заблокированным. АБС позволяет превратить непрерывное тормозное усилие, прикладываемое водителем к педали, в серию тормозных импульсов на колесах и тем самым избежать их блокирования. Это не только сокращает тормозной путь на однородном дорожном покрытии, но и дает возможность сохранить управляемость.

Программы блоков управления серийных АБС рассчитываются под некие усредненные параметры и должны обеспечивать приемлемое замедление при работе со всеми шинами, которыми может оснащаться данный автомобиль на конвейере. Но если оптимизировать алгоритм работы блока АБС под сцепные свойства конкретной модели покрышек, то это может дать выигрыш в тормозной динамике.

Увы, АБС не безгрешна. Во-первых, на дороге с неоднородным покрытием (например, под одним из колес лед) она может внезапно ослабить торможение, пытаясь не допустить пробуксовки. Во-вторых, АБС отключается при снижении скорости до 5-10 км/ч и водитель, не ожидающий этого может в последний момент попасть в ДТП. В-третьих, АБС не позволит на переднеприводной машине войти в поворот с заносом задней оси приемом «газ-тормоз», что огорчит любителей активного стиля вождения. В-четвертых, при торможении на снегу заблокированные колеса сгребают снег перед собой и автомобиль останавливается быстрее, чем с АБС. И, наконец, для обычного водителя АБС и алгоритм ее работы скорее всего являются «черным ящиком», поэтому результат торможения может отличаться от желаемого и прогнозируемого.

Brake Assist System (BAS)

Во время «панического» нажатия на педаль тормоза большое число водителей не нажимает на педаль с силой, достаточной для активирования АБС, что приводит к увеличению тормозного пути. Система Brake Assist принимает во внимание этот факт и в ситуациях экстренного торможения примерно на 40% снижает необходимое для активации АБС тормозное усилие. BAS помогает водителю в критической ситуации реализовать максимальное усилие на педали тормоза в первые же мгновения экстренной остановки. Иными словами, BAS при резком торможении оценивает не усилие нажатия на педаль, а скорость перемещения педали и быстрее вводит в действие рабочую тормозную систему. Таким образом, большинство водителей оказываются способными остановить автомобиль настолько быстро, насколько позволяют дорожные условия. Система Brake Assist устанавливается только на автомобилях с АБС.

Профессионалу система Brake Assist вряд ли нужна. Ведь опытный водитель даже в критической ситуации дозирует усилие на педали тормоза весьма точно (делает это резко, но не панически). А вот для подавляющего большинства «обычных» водителей система Brake Assist — это то, что надо.

В отличие от SBC (см.ниже), Brake Assist не может перераспределять усилия между колесами, а только «додавливает» педаль, гарантируя включение АБС в работу.

Технически эта идея реализована так. В пневматический усилитель тормозов встроены датчик скорости перемещения штока и электромагнитный привод. Как только в управляющий центр с датчика скорости поступает сигнал о том, что шток движется очень быстро (это значит, что водитель резко ударяет по педали), срабатывает электромагнит, который увеличивает силу воздействия на шток. Таким образом, уже через долю секунды автоматика помогает водителю добиться наиболее эффективного торможения. Кроме того, BAS «запоминает», как тормозит данный водитель в штатных режимах, поэтому ей легче «распознать» критическую ситуацию. В то же время даже на влажном покрытии срыва колес в юз не происходит — в действие успевает вступить АБС. То есть BAS помогает водителю в самый первый момент торможения, а уж если в следующие мгновенья усилия слишком много, то АБС предохранит колеса от блокировки и сохранит автомобиль управляемым. Испытания показали, что при остановке со скорости 100 км/ч использование BAS позволяет сократить тормозной путь с 46 до 40 метров.

Electronic Stability Programm (ESP)

Electronic Stability Program расшифровывается как электронная система контроля устойчивости автомобиля. Благодаря всевозможным датчикам, ESP в критический момент притормаживает одно или несколько колес, препятствуя развитию заноса задней оси или сносу передней. Блок управления системы — это процессор, который помимо непосредственно руководством за функцией стабилизации автомобиля сочетает в себе и антиблокировочную систему (ABS), а иногда еще и антипробуксовочную систему и усилитель тормозов в экстренных случаях Brake Assist (BAS). Кроме датчиков скорости на колесе, в машине стоят датчики угла поворота на руле, датчик уровня поперечных ускорений и поворота машины вокруг своей оси. На основе всей этой информации блок управления распознает момент, когда автомобиль отклоняется от того пути, который задал водитель рулевым колесом, и принимает решение о подтормаживании одного из колес.

Если во время поворота на заднеприводном автомобиле начинается занос задней оси, то система притормаживает переднее внешнее колесо. Переднее внутреннее колесо будет вращаться, и таким образом создастся «противозанос». Примерно то же самое происходит и на переднем приводе, когда начинается снос ведущей оси. ESP работает таким образом, что если соскальзывание и началось, оно должно быть равномерным и плавным. Если автомобиль начинает скользить всеми четырьмя колесами, то система задействует несколько колес. Время реакции системы на изменение положения автомобиля составляет около 20 миллисекунд.

Водителю, который не обладает навыками и умениями контраварийной езды, она нужна. Благодаря ESP человек, впервые севший за руль, сможет безопасно управлять автомобилем на любой дороге. Тому же, кто покупает мощную машину для того, чтобы проходить повороты с заносом и впрыскивать адреналин в кровь, ESP несколько снизит удовольствие, но зато повысит безопасность.

Sensotronic Brake Control (SBC)

Эта электронная система управления тормозами является следующим шагом прогресса вслед за АБС, ESP и Brake Assist. При нажатии на педаль тормоза микрокомпьютер с помощью информации от различных систем и датчиков оценивает скорость переноса ноги с педали газа на педаль тормоза, силу нажатия на педаль, включенную передачу, особенности дорожного покрытия, траекторию движения, скорость и ускорения, нагруженность автомобиля и другие параметры. В результате выдается оптимальное тормозное усилие, причем на каждое колесо — разное. Например, при интенсивном торможении перераспределение веса автомобиля между передней и задней осями дает возможность увеличить давление в передних тормозных цилиндрах, не вызывая блокировки колес. В поворотах внешние колеса загружаются сильнее, чем внутренние. Для этого приходится отказываться от общего гидравлического контура и управлять каждым тормозом индивидуально. В случае изменения параметров движения усилия мгновенно перераспределяются.

Система способна работать и в «пробочном» режиме, когда электроника сама останавливает автомобиль, как только водитель убрал ногу с педали газа, а функция «мягкой остановки» обеспечивает очень плавное торможение без «клевков».

Что дальше?

Специалисты фирмы «Continental » недавно продемонстрировали некоторые направления развития систем для интенсивного торможения. Подробный обзор можно найти в журналах «Авторевю» №1,2001 и «За рулем» №5, 2001, поэтому просто перечислим основные компоненты: электрогидравлические тормоза, пневмоподвеска, регулируемые бортовым компьютером амортизаторы, намагниченная боковина шин (SWT, Side Wall Torsion), «бионический» каркас шин (эффект «кошачьих лап»).




Автоматические коробки переключения передач

В настоящее время существует множество вариантов трансмиссии, отличных от обычной механической («ручной») КПП, которые облегчают работу водителя, хотя и требуют от него определенных навыков. Наиболее распространена гидромеханическая коробка передач (ГМП). Есть также электронно управляемые коробки передач, в том числе адаптивные, автоматическое сцепление, SMT, клиноременный вариатор.

Гидромеханические коробки передач (ГМП)

В США гидромеханическими коробками оборудуют 98% выпускаемых легковых автомобилей, в Японии — 60%, в Германии — 30%.

Несмотря на разнообразие конструкций, установилась общая для большинства ГМП схема. Одним из основных узлов гидромеханической передачи является гидротрансформатор, который служит для автоматического и бесступенчатого изменения крутящего момента двигателя (аналог сцепления в механической трансмиссии). Внутри гидротрансформатора находится три лопастных колеса: насос, соединенный с валом двигателя, турбина и реактор. Во время работы двигателя он полностью заполняется маслом под давлением, которое совершая сложное движение, передает крутящий момент двигателя от насосного колеса на турбину. Второй основной узел гидромеханической передачи — автоматическая механическая передача (собственно коробка передач). Она состоит из планетарного механизма (ряды шестерен), системы управления планетарным механизмом (фрикционные сцепления и тормозные ленты, муфты свободного хода) и системы гидравлического управления. Посредством включения и выключения в определенной последовательности фрикционного сцепления и тормозных лент происходит перераспределение крутящего момента двигателя в планетарном механизме.

Систему управления АКПП условно можно разделить на три части:

  • формирующую сигналы состояния АКПП и органов ее управления,
  • анализирующую
  • исполнительную.

В случае «гидравлической» АКПП работоспособность всех этих трех частей обеспечивает система гидравлического управления, которая представляет собой различные гидравлические клапаны, обеспечивающие поддержание определенных давлений, переключение передач в автоматическом режиме (или по желанию водителя), плавность и безударность переключения передач.

Для осуществления работы гидропередачи применяется масляный насос. Он подает масло в узлы управления планетарным механизмом, в систему гидравлического управления, а также в гидротрансформатор и систему смазки коробки передач.

«Электронные» АКПП

В случае электронной АКПП все сигналы формируются электрическим путем, и только в конце цепочки управляющих сигналов используется гидравлика. Кроме того, для анализа поступающей информации и принятия решения используется компьютер. Это позволяет сделать систему управления АКПП более гибкой, обеспечивающей недоступные для гидравлической системы управления режимы работы АКПП.

Бортовой трансмиссионный компьютер может быть выполнен как в виде отдельного устройства, так и быть совмещен с блоком управления двигателем. В трансмиссионный компьютер поступают сигналы различных датчиков (скорости, угла открытия дроссельной заслонки, положения РВД, температуры масла АКПП и др.). Он обрабатывает эту информацию и вырабатывает команды исполнительным устройствам в АКПП (соленоидам).

Компьютер выполняет и другую функцию — контроля и диагностики неисправностей. В случае возникновения серьезных проблем система управления переходит в режим защиты АКПП. Аварийный режим сопровождается миганием, либо постоянной индикацией на панели приборов одного из сигналов, связанных с работой АКПП. Он не предполагает эксплуатации автомобиля и служит только для того, чтобы добраться до сервиса и устранить неисправность. Проблемы с переключениями передач, плохая динамика, рывки, «удары» могут быть обусловлены как неисправностью самой трансмиссии, так и проблемами с проводкой и датчиками, а также неисправным трансмиссионным компьютером.

Адаптивные автоматические коробки передач

Бортовой компьютер следит за манерой водителя управлять автомобилем, подстраиваясь соответствующим образом под нее. Кроме того, в алгоритм работы такого компьютера заложен учет износа в АКПП фрикционных элементов управления. Все это приводит не только к повышению комфортности поездки, но и к повышению его ресурса и экономичности.

Autostick (Steptronic, Tiptronic)

Это система управления работой АКПП, в которой предусмотрен полуавтоматический режим управления, т.е. команду на переключение передачи дает водитель, а качество этих переключений обеспечивает система управления. Реализуется он только на автомобилях, имеющих электронную систему управления АКПП. РВД здесь имеет специальное положение, в котором включается режим Autostick. Относительно этого положения есть два противоположных, не фиксируемых положения РВД, для переключения на более высокую или более низкую передачу.

Трансмиссионный компьютер при этом не перестает контролировать действия водителя и не позволит ему, например, тронуться с высшей передачи, или выбрать передачу таким образом, чтобы обороты двигателя превысили допустимые. По желанию водителя можно перейти и на обычный автоматический режим управления, переведя РВД в положение "D".

Положения рычага выбора диапазона

Рычаг выбора диапазона (РВД) работы коробки передач (его еще называют «селектором») имеет несколько положений, которые имеют буквенное и цифровое обозначение. Количество этих положений у разных моделей автомобилей разные, но на всех автомобилях обязательно имеются положения, обозначенные буквами «Р», «R» и «N».

  • «P» (parking, парковка). Выбирается при длительной стоянке автомобиля. В этом положении РВД в АКПП выключены все элементы управления, а ее выходной вал заблокирован трансмиссионным тормозом, поэтому движение автомобиля невозможно. На этом режиме разрешен запуск двигателя. Двигатель работает на холостом ходу.
  • «R» (reverse, задний ход). Задний ход. Перевод рычага в положение «R» во время движения может привести к выходу из строя коробки передач и других элементов трансмиссии. В этом положение РВД запуск двигателя невозможен.
  • «N» (neutral, нейтраль). Используется для буксировки автомобиля. В коробке передач выключены либо все элементы управления, либо включен только один. Механизм блокировки выходного вала при этом выключен, т.е. автомобиль может свободно перемещаться. На этом режиме разрешен запуск двигателя.

Для четырехскоростных коробок передач РВД диапазона имеет, как правило, четыре положения движения вперед: «D», «3», «2» и «1» («L»). Из этих положений запуск двигателя невозможен.

  • «D» (drive, ехать) — основной режим движения. Он обеспечивает автоматическое переключение с первой по четвертую передачу. В нормальных условиях движения рекомендуется использовать именно его.
  • «3» — разрешено движение на первых трех передачах. Рекомендуется использовать при движении по холмистой дороге или в условиях частых остановок.
  • «2» — разрешено движение только на первой и второй передачах. Рекомендуется использовать на извилистых горных дорогах. Переключение на третью и четвертую передачи запрещено.
  • «1» — разрешено движение только на первой передаче. Этот диапазон позволяет максимально реализовать режим торможения двигателем. Он рекомендуется при движении на крутых спусках.
  • Оverdrive («OD») означает повышающую передачу. Рекомендуется использовать для размеренной, экономичной езды на магистрали. Часто, чтобы не изменять шкалу диапазонов рычага переключения, включение четвертой (повышающей) передачи осуществляют кнопкой, расположенной на рычаге или на панели приборов.

В настоящее время встречаются увеличенные шкалы диапазонов рычага переключения передач (до семи положений). Это связано с установкой четырехступенчатых, а в последнее время и пятиступенчатых автоматических коробок передач. У всех типов рычагов переключения существуют фиксаторы диапазонов, которые не позволяют случайно перевести рычаг из одного диапазона в другой. Эти фиксаторы исполнены в виде кнопки на ручке рычага или в виде направляющей щели рычага.

На большинстве современных автомобилей с автоматической трансмиссией в систему управления заложено несколько дополнительных программ управления переключением передач. Для их реализации на приборной панели или рядом с рычагом выбора диапазона расположена специальная кнопка или переключатель.

Экономичная программа. Программа настроена на обеспечение движения с минимальным расходом топлива. Движение автомобиля в этом случае носит плавный, спокойный характер.

Спортивная программа. Эта программа настроена на максимальное использование мощности двигателя. Автомобиль в этом случае развивает, по сравнению с экономичной программой, значительно бОльшие ускорения.

Электронные блоки управления часто имеют специальную программу трогания с места на скользкой дороге (зимняя программа). Трогание при этом, как правило, осуществляется со второй, либо с третьей передачи.

Основные достоинства АКПП

  • Увеличивается комфортность вождения за счет плавного трогания с места и переключения передач;
  • Можно полностью сосредоточиться на вождении, снижается утомляемость водителя;
  • Предотвращается возникновение перегрузок двигателя и ходовой части автомобиля из-за ошибок водителя, увеличивается ресурса двигателя;
  • Автомобиль с АКПП оборудован системой пассивной безопасности, которая не позволяет завести двигатель в положениях РВД отличных от «P» и «N», а также предотвращает самопроизвольное движение автомобиля при стоянке на неровной площадке, т.к. извлечь ключ из замка зажигания можно только в положении РВД «P»;
  • Повышается проходимость по песку, снегу и другим непрочным грунтам благодаря плавному подводу крутящего момента двигателя к ведущим колесам, исключается возможность самопроизвольной остановки двигателя.

Недостатки АКПП по сравнению с механической коробкой

  • Более низкий КПД, что увеличивает расход топлива;
  • Несколько худшие динамические показатели разгона;
  • Труднее выбраться враскачку из снега или грязи;
  • Невозможность выполнить некоторые приемы активной безопасности (прохождение поворотов в управляемом заносе, силовом скольжении, приемом «газ-тормоз» и др.);
  • Сложность устройства и дороговизна ремонта.

Основные достоинства АКПП Советы и рекомендации:

Перед тем как завести мотор, проверьте положение селектора. Мотор заведется только в положениях P или N.

В холодное время года, до начала движения переместите РВД во все положения, задерживаясь в каждом из них на несколько секунд. Затем включите один из диапазонов движения, и несколько минут удерживайте автомобиль тормозом, двигатель при этом должен работать на холостых оборотах.

Перед началом движения нажмите на педаль тормоза, переведите РВД в нужную позицию, не нажимая при этом на педаль управления дроссельной заслонкой. После характерного легкого толчка и снижения оборотов холостого хода отпустите педаль тормоза и начните движение, нажимая на педаль газа.

Первое время после начала движения избегайте динамичной езды, пока масло во всех агрегатах не прогрелось до рабочей температуры.

Если вы впервые начинаете ездить на «автомате», постарайтесь подавить некоторые привычки, выработанные на «ручной» коробке передач. Не поддавайтесь искушению вручную включить следующую передачу во время разгона или перейти на нейтраль или пониженную передачу в начале торможения, если только не требуется торможение двигателем. В первые дни привыкания уберите левую ногу подальше от педалей, чтобы инстинктивно не нажать вместо несуществующего сцепления на тормоз.

В городских условиях не пользуйтесь повышающей передачей, т.е. выключите кнопку «OD» или переведите рычаг из положения «OD» в положение «D», а в отсутствие овердрайва из положения «D» в положение «3».

В горных и других тяжелых условиях используйте диапазон «2».

Рычаг выбора диапазона можно переключать на ходу, но не во все положения. Категорически запрещается при движении вперед переводить РВД в положения «Р» и «R». В оба эти положения рычаг можно переводить только при полной остановке автомобиля. Не рекомендуется без крайней необходимости во время движения переводить РВД в положение «N». Если это произошло, сбросьте газ, подождите падения оборотов до значений холостого хода и затем включите «драйв». Во все остальные положения РВД можно переводить во время движения. Единственное ограничение — не превышать допустимые обороты двигателя.

Перевод селектора из положения «3» («D») в положение «2» увеличит эффективность торможения двигателем, принудительно включая пониженную передачу. Перед переводом рычага отпустите педаль акселератора. По мере снижения скорости (не выше 50 км/ч) можно перевести селектор и в положение «1». Не следует ожидать такого же замедления как на механической коробке, так как эффект торможения двигателя сильно ослабляется проскальзыванием гидротрансформатора.

Для быстрого разгона, например, во время обгона также полезно перевести селектор из положения «3» («D») в положение «2». В этом случае следите за показаниями тахометра или спидометра, чтобы не перекрутить двигатель. На тех коробках передач, где имеется такая возможность для этих же целей переключите режим разгона с экономичного на спортивный. Более резкое нажатие на педаль акселератора также приведет к более позднему переключению передач и более эффективному разгону.

Для получения максимальных значений ускорения быстро нажмите до упора педаль газа, затем резко отпустите ее — в коробке передач произойдет переключение на одну или две передачи вниз — режим кик-дауна (kick-down) — и при дальнейшем нажатии автомобиль разгоняется максимально быстро. Обратное повышающее переключение в этом случае может произойти только при достижении двигателем максимальных оборотов. Если отпустить педаль управления дроссельной заслонкой, то коробка передач перейдет в штатный режим работы. Не пользуйтесь кик-дауном без необходимости, чтобы не сокращать ресурс агрегата.

Перед поворотом для увеличения загрузки передней оси и входа в поворот на пониженной передаче воспользуйтесь кик-дауном. Другой вариант — переключить перед входом в поворот селектор КПП в положение «2» или воспользоваться возможностями секвентальных коробок и вручную понизить передачу.

При кратковременных остановках обязательно удерживайте автомобиль нажатием на педаль тормоза, так как машина может тронуться с места даже на холостом ходу — не исключается полностью передача крутящего момента к ведущим колесам. Однако этот эффект можно использовать для медленного маневрирования в ограниченном пространстве.

Переводите рычаг выбора диапазона в «N» только при длительных остановках в уличных пробках в жаркую погоду, для снижения тепловыделения и предотвращения перегрева масла коробке. В остальных случаях это делать не рекомендуется.

Для надежной фиксации автомобиля на стоянке на относительно ровных участках вполне достаточно исправного механизма блокировки выходного вала АКПП (положение «Р»). Но если автомобиль стоит на уклоне, то включение ручного тормоза обязательно. Причем первым необходимо затянуть ручной тормоз и только после этого установить РВД в положение «Р».

На скользкой дороге во время принудительного понижения передачи ведущие колеса могут начать буксовать, что может привести к возникновению заноса. Ничего страшного во время буксования в АКПП не происходит. Повышенное тепловыделение в гидротрансформаторе в этом случае может быть критичным, только если система охлаждения имеет низкую эффективность (радиатор охлаждения АКПП засорен продуктами износа).

Если вы постоянно пользуетесь прицепом, подумайте об установке дополнительного радиатора в систему охлаждения АКПП. В случае полной загрузки автомобиля или буксирования прицепа использование повышающей передачи нежелательно. Лучше это делать на диапазонах «3» или «2». Разгон в таких случаях начинайте на диапазоне «1» и на скорости около 40 км/ч переводите селектор в положения «2», «3» или «D».

Если вы забуксовали в снегу или грязи, то включите режим понижающей передачи «1». Затем, действуя педалью тормоза как сцеплением, т.е. плавно отпуская ее, обеспечьте медленное вращение колес. В точке «зависания» нажмите тормоз, переключите селектор на задний ход и т.д.

При необходимости буксировки автомобиля с АКПП пользуйтесь правилом 50х50: транспортировка на нейтрали («N») на скорости не более 50 км/ч на расстояние не более 50 км. Если двигатель может работать, то лучше включить его. Если нужно перевезти машину на бОльшее расстояние, воспользуйтесь эвакуатором или разъедините трансмиссию.

Не пренебрегайте техническим обслуживанием АКПП: периодически осматривайте ее на предмет течи масла; контролируйте уровень масла и доливайте его; вовремя заменяйте масло вместе с фильтром, причем сторонникам активного стиля вождения лучше делать это чаще, чем указано в инструкциях.

При первых подозрениях на неполадки, сделайте диагностику и, возможно, вы сэкономите много денег. Не доверяйте ремонт «автомата » соседу дяде Васе. Воспользуйтесь услугами специализированных фирм.

Про вариаторы поговорим в другой раз.


Задачи и принцип действия амортизаторов

В любой подвеске имеются упругие элементы, назначение которых — смягчать толчки и удары, чтобы они не передавались на кузов. Чаще всего это витые пружины.

Автомобиль, колесо которого вывешено в воздухе, не может тормозить, разгоняться или поворачивать, т.е. становится неуправляемым. Пружины стремятся вернуть колесо на землю, но ударившись о покрытие, оно отскакивает назад. Чем мягче пружина, тем сильнее она сжимается и тем больше поглощает энергии. Если не принять специальных мер, запасенная энергия будет расходоваться медленно — только на преодоление внутреннего трения в пружине и подвеске. За это время автомобиль успеет наехать на множество других неровностей, возникшие колебания не затухнут и колесо будет подпрыгивать, то и дело теряя контакт с дорогой. На помощь пружинам приходит устройство для быстрого гашения колебаний — амортизатор. Если основная задача пружины — поглощать энергию толчков, то задача амортизатора — преобразовывать колебания кузова и подвески в тепло.

Амортизатор представляет собой закрытый цилиндр с поршнем, в котором установлены клапан отдачи и клапан сжатия. Для уменьшения шума амортизаторы крепятся к кузову с помощью эластичных элементов. При работе амортизатора шток, соединенный с кузовом автомобиля, перемещается внутри цилиндра и сжимает жидкость, которая по калиброванным отверстиям, создающим сопротивление, перетекает в другую полость. На такое перекачивание затрачивается значительная работа. Таким образом, гашение колебаний происходит за счет преодоления сопротивления перекачивания жидкости из одной полости в другую. Энергия колебаний переходит в тепло, которое рассеивается в пространстве. Характеристики исправного амортизатора рассчитаны так, что колесо делает только одно «полноценное» движение вверх, возвращается вниз и после этого 80% энергии удара погашено амортизатором — превращено в тепло и рассеяно в воздухе.

Главная характеристика амортизатора, называемая скоростной, выражает зависимость усилия его сопротивления от скорости прямого хода штока (сжатия) и обратного (отбоя).

Работа амортизаторов влияет на следующие характеристики движения автомобиля по дороге:

  • Плавность хода: насколько кузов и находящиеся в нем люди изолированы от толчков и раскачки на неровностях.
  • Управляемость: как автомобиль выполняет маневр (скорость реакции, точность, крены, поперечная раскачка кузова).
  • Устойчивость: нет ли на неровностях дороги (как на прямой, так и в повороте) самопроизвольного отклонения машины от заданной траектории движения.

Неисправные амортизаторы

Чем более неисправны амортизаторы, тем больше времени колесо проводит в воздухе, а не в контакте с дорогой. Это приводит к следующим проблемам:

  • Увеличивается тормозной путь, особенно нагруженного автомобиля и с прицепом
  • Ухудшается сцепление колес с дорогой
  • Снижается скорость безопасного прохождения поворотов и выполнения экстренных маневров, особенно в сочетании с торможением. Достаточно сильного порыва бокового ветра, чтобы автомобиль снесло в сторону. Ухудшается управляемость, автомобиль начинает рыскать.
  • Снижается порог появления аквапланирования
  • Ухудшается освещение дороги
    Неравномерное и нестабильное освещение дороги из-за колебаний кузова как в продольной, так и в поперечной плоскостях, делает ночное вождение опасным и утомительными для самого водителя и для водителей встречного транспорта из-за ослепляющего эффекта фар.
  • Увеличивается утомляемость водителя и, как следствие, время реакции
  • Повышенный износ шин и узлов ходовой части и трансмиссии, повышенный расход топлива
    Из-за плохого сцепления с дорогой в моменты «полетов» ведущих колес возникает пробуксовка, которая сопровождается повышением оборотов и соответственно ростом потребления топлива. Такие пробуксовки вызывают также интенсивный износ протектора шин и деталей трансмиссии.
  • Разрушения кузовных элементов
    При движении по неровностям типа «стиральной доски» могут появиться резонансные колебания, которые способны вызвать даже трещины силовых элементов кузова, особенно вблизи точек крепления двигателя и коробки передач.
  • Нарушается работа электронных систем помощи водителю
    Особенно не любят неисправные амортизаторы системы АБС, ПБС (АПС) и Traction Control, т.к. не обеспечивается постоянный и надежный контакт колес с поверхностью дороги. Их датчики настроены на отслеживание поведения колес, катящихся по земле, а не вращающихся в воздухе. Интеллектуальная элетроника не способна зафиксировать момент, когда колесо оторвалось от земли и «зависло» в воздухе. Электронные «мозги» путаются и дают неверные указания исполнительным механизмам.
  • Снижение комфортности поездки
    Машину трясет, вибрация становится неравномерной и часто сопровождается стуками.

Опасность ситуации заключается в том, что, во-первых, водители не осознают проблем, связанных с амортизаторами, а во-вторых износ амортизаторов происходит постепенно, часто без видимых или слышимых признаков. Водитель привыкает к «новому» поведению автомобиля.

Конструкции амортизаторов

Все амортизаторы принято делить на «гидравлические», «газовые» и «поддутые» (c газом низкого давления). Деление это условно потому, что во всех трех случаях используется примерно одинаковый клапан, а в качестве компенсационного элемента используется газ. Центральный клапан перемещается в центральном цилиндре, а дальше начинаются отличия. Гидравлические амортизаторы и поддутые имеют еще второй, внешний цилиндр, куда перетекает масло через систему нижнего клапана. Газовый амортизатор внешнего цилиндра не имеет.

Исходя из конструкции, амортизаторы логичнее классифицировать на двухтрубные и однотрубные. У каждого из них есть свои преимущества и недостатки.

Двухтрубные гидравлические амортизаторы:

Преимущества:

  • демпфируют мягче потому, что у них две системы клапанов плюс газ у них под более низким давлением.
  • по цене — самые доступные;
  • небольшая длина;
  • нечувствительны к внешним повреждениям.

Недостатки:

  • чувствительны к перегрузкам (провалы демпфирования)
  • отводят тепло хуже чем однотрубные высокого давления, так как «генератор тепла» — центральный цилиндр закрыт сверху еще одним соосным цилиндром, наполненным маслом и компенсационным газом.
  • тяжелее однотрубных. Установка первых на автомобиле ведет к увеличению неподрессоренной массы подвески и, как следствие, увеличению ее инертности. Они медленно реагируют на перемещения колеса, особенно при низкочастотных колебаниях небольшой амплитуды. Чем выше давление газа, подпирающего масло, тем выше «быстрота реакции» амортизатора. При частых перемещениях вверх-вниз на характерных участках дороги (типа раллийная трасса), инерция заставляет подвеску как бы «задумываться» поочередно то в верхней, то в нижней точки и пропускать очередное препятствие или яму.
  • не любят быстрой езды по плохим дорогам. При резком перемещении поршня на обратной стороне клапана создается разряжение и могут образоваться кавитационные пузырьки. Это резко изменяет характеристики демпфирования. При часто повторяющихся резких перемещениях амортизатор «вскипает» — кавитационные пузырьки и газ компенсационного объема смешиваются с маслом в подобие эмульсии, при этом демпфирование практически исчезает.

Зачем нужен компенсационный объем газа? Жидкость, как известно, сжимается, но очень незначительно. Поэтому, если бы не было компенсационного объема, поршень внутри цилиндра при резком перемещении натыкался бы на «каменную стену» масла, которое в силу своей большой инерции еще не начало течь через калиброванные отверстия клапанов. Компенсационный объем газа сжимается первым и принимает на себя удар и лишь потом масло начинает проходить через калиброванные отверстия клапанов центрального штока. К тому же при работе масло нагревается, часто до значительных температур. Увеличение его объема при этом необходимо компенсировать и делает это небольшая порция газа.

От применяемого масла требуется не только коррозионная, но и термическая стойкость. Основное требование, предъявляемое к амортизационной жидкости, — чтобы при низкой температуре масло не очень густело, а при высокой не закипало. Перегреваясь, амортизационная жидкость частично теряет свои свойства, и эффективность гашения колебаний резко падает.

 

Газо-масляные амортизаторы

По характеристикам немного жестче предыдущих, однако наличие в компенсационном объеме газа (азота) под низким давлением исключает вскипание жидкости. Прекрасно подходят для наших дорог, обеспечивают хорошие сцепные свойства на высоких скоростях. Стоят немного дороже масляных.

Однотрубные газовые амортизаторы

Представляют собой двойной поршень с двумя раздельными клапанами. Масло и газ расположены последовательно в одном цилиндре и разделены плавающим клапаном (разделительным поршнем). Газ находится под давлением около 25 атмосфер. Таким образом, клапан штока находится все время в «поджатом», «подпружиненном» состоянии и гораздо быстрее реагирует на выбоины и ухабы дороги.

Газовые амортизаторы — самые жесткие. Их поклонниками являются автоспортсмены, для которых главное — чтобы машина на высокой скорости и на любом покрытии как можно лучше держала дорогу. Газовые амортизаторы всеми преимуществами обязаны бОльшей площади поршня, которая позволяет амортизатору эффективно демпфировать самые малые и медленные перемещения колеса.

Преимущества:

  • Полное отсутствие вспенивания масла. Подпружиненное масло практически не вспенивается, а отделение компенсационного объема плавающим поршнем снимает вопрос о возможном смешивании газа с маслом.
  • Возможность работы в любом положении;
  • Четкое демпфирование самых мелких неровностей;
  • Лучшая теплоотдача в окружающую среду.
  • Недостатки:
  • БОльшая длина;
  • Дороже и сложнее в производстве, чем двухтрубные амортизаторы;
  • Сложно применить в подвеске МакФерсона из-за меньшего сопротивления на изгиб;
  • Меньший комфорт и бОльшие ударные нагрузки на кузов. Последнее снижает усталостную прочность металла силовых элементов кузова. Повышается нагрузка на подшипники ступиц, шаровые опоры и сайлент-блоки. Особенно опасно ставить газовые амортизаторы на старые автомобили.
  • Внешняя сторона цилиндра амортизатора подвержена деформациям от отлетающих камней.
  • Клапаны, через которые протекает масло, можно настроить так, что сопротивление амортизатора будет разным в зависимости от направления работы подвески. Обычные амортизаторы имеют усилие при отбое в два-четыре раза больше, чем усилие при сжатии. Амортизатор изготавливается так, чтобы ход штока на сжатие был легче, а обратный — с сопротивлением распрямлению пружин. Связано это с тем, что наиболее эффективное гашение колебаний происходит при свободном ходе подвески. Большое сопротивление амортизатора при ходе сжатия вызовет лишь увеличение ее жесткости. Это означает, что когда колесо наезжает на препятствие, оно с легкостью идет вверх, а затем, уже при возврате его назад, пружинам и приходится работать, тратя накопившуюся при сжатии кинетическую энергию.
  • Различают также амортизаторы с регрессивной и прогрессивной характеристиками гашения колебаний. Регрессивные хорошо гасят боковые и продольные крены и плохо поглощают мелкие дорожные неровности. Прогрессивные хорошо гасят мелкие неровности, но плохо себя чувствуют в поворотах и при торможении.
  • Регулируемые амортизаторы

Демпфирующие характеристики таких амортизаторов можно изменять в зависимости от дорожных условий. Управление жесткостью амортизатора осуществляется за счет изменения давления газа или параметров перепускных клапанов. В простых вариантах это можно сделать с водительского места переключателем, имеющим несколько положений. В более сложных подвеска оснащается набором датчиков ускорений, а управление берет на себя компьютер. Такая подвеска, которая называется адаптивной.

Отличие амортизатора «Сенса-Трак» — в технологии системы переменного сопротивления давлению (ПСД). Амортизатор способен воспринимать меняющиеся дорожные условия и автоматически подстраиваться к ним. В его стенке находится вертикальный канал, через который протекает масло между верхней и нижней частями трубки, обходя клапан поршня. Пока колебания подвески незначительны, поршень находится в центральной «зоне комфорта». Диаметр этой зоны превышает диаметр поршня, и масло встречает хотя и постоянное, но небольшое сопротивление. На ухабистой дороге, в резком повороте, при внезапном торможении поршень достигает «зон контроля». Канал сужается до полного перекрытия поршнем, и в результате давление увеличивается, а амортизация становится более жесткой.

Амортизаторы с компенсацией нагрузки

Амортизаторы этого типа устанавливаются, как правило, взамен задних на автомобили, которые загружаются постоянно или время от времени до полной грузоподъемности.

Здесь применяется дополнительное пневматическое либо гидропневматическое устройство, выполняющее роль регулируемой пружины и представляющее собой герметичную резиновую мембрану, прочно соединенную с корпусом и грязезащитным щитком. Преимущества по сравнению с обычным амортизатором:

  • пружина приобретает нужную жесткость в зависимости от потребности;
  • выравнивает нагруженный автомобиль, возвращая подвеску в первоначальное положение.

Причины выхода из строя

Вызвано это несколькими причинами: необратимым процессом старения и износа резинотехнических изделий при длительной эксплуатации; низким качеством изготовления; неправильной установкой; нарушением правил эксплуатации.

В самом амортизаторе сломаться могут только две вещи — выйти из строя клапаны и нарушиться герметичность сальника штока. Вторая причина является основной.

Диагностика амортизаторов

Визуальный осмотр

Этот тест один из самых достоверных и, несомненно, дешевых и оперативных. На амортизаторе может быть заметен масляный «туман», но не должно быть подтеков. Если при проверке возникли сомнения, протрите амортизатор насухо и осмотрите его через несколько дней работы. Обратите внимание на состояние буфера отбоя и пыльника. Важнейшим элементом визуального осмотра является состояние шин. Еще одним «визуальным» тестом является осмотр штока.

Тест на «покачивание»

Можно выявить только «убитый» амортизатор. При движении автомобиля скорость движения штока амортизатора значительно выше, чем та, которой Вам удастся достичь, раскачивая автомобиль. Поэтому и определить степень износа амортизатора в данном случае невозможно.

Чтобы не оставить на капоте или крыле заметную вмятину, «давить» автомобиль следует аккуратно и лучше вблизи ребер жесткости облицовки кузова.

По степени нагрева

Чем теплее амортизатор, тем эффективнее он выполняет свою функцию. Непосредственно перед проверкой амортизаторы нужно «разогреть», погоняв автомобиль по «стиральной доске» или по трассе с высокой скоростью. Температура каждого амортизатора не должна существенно отличаться друг от друга. Более низкая температура того или иного амортизатора по сравнению с другими — доказательство снижения эффективности его работы.

Оценка управляемости автомобиля в движении

Оценить степень исправности амортизаторов по поведению автомобиля в движении под силу только опытным водителям.

Неисправные амортизаторы приводят к тому, что на скоростях начиная с 80 километров в час автомобиль начинает рыскать, особенно при встрече с мелкими неровностями дороги. Снижается курсовая устойчивость, начинается продольная и поперечная раскачка. Раскачка имеет продолжительный незатухающий характер. При движении по неровностям автомобиль показывает замедленную реакцию на руль — тот уже вывернут, а машина все не начинает поворачивать.

Инструментальный контроль (стендовая диагностика)

Различают вибрационные стенды и проверку демпфирующего усилия на испытательных стендах.

Выбор и замена амортизаторов

Плохих и хороших (по характеристикам) амортизаторов нет. Все зависит от профиля дороги, состояния автомобиля и даже от личных особенностей водителя. Для каждой модели амортизатора может найтись такая дорога, на которой он проявит себя лучше других.

Комфорт и управляемость — показатели технически противоположные. Увеличивая один из них, мы уменьшаем другой. У каждого водителя собственный стиль вождения и свои требования к комфорту и представления о необходимой жесткости подвески. Уровень тряски, устраивающий одного человека, совершенно неприемлем для другого. Острота восприятия тряски сильно зависит от конституции человека. Полностью удовлетворяют этим противоположным требованиям только амортизаторы с переменными характеристиками. Но схемы управления ими настолько сложны и дороги, что на массовых автомобилях такие подвески пока не применяют.

Неверно утверждать, что газовые одноцилиндровые амортизаторы «в целом» лучше гидравлических двухтрубных. Реальными их преимущества становятся только в условиях спортивных соревнований. Для подавляющего числа «рядовых» автомобилистов и условий их езды гидравлические амортизаторы справляются со своими задачами на сто процентов. Практически все однотрубные газонаполненные амортизаторы дороже гидравлических.

Более того, подержанный российский автомобиль опасно ставить на «газ». Даже год, проведенный на газонаполненных амортизаторах, разобьет его окончательно.

Со временем пружины теряют упругость и постепенно проседают. При этом снижается резонансная частота колебаний кузова, уменьшается дорожный просвет, нарушаются углы установки колес, нагрузка становится асимметричной. Даже если амортизаторы находятся в идеальном состоянии, проседания пружин это не компенсирует, да и сами амортизаторы будут работать ненормально. Поэтому некоторые автопроизводители для замены на подержанном автомобиле рекомендуют другие модели амортизаторов по сравнению с первоначальными — учитываются изменения характеристик пружин.

Амортизаторы, предназначенные для рынка запчастей, по управляемости никто к конкретным автомобилям не настраивает. Поэтому когда вы покупаете такие амортизаторы для замены изношенных «родных», никто не может точно сказать, каким станет автомобиль. Чтобы узнать, насколько те или иные амортизаторы подходят для кокретного автомобиля, надо ставить их на машину и ездить.

Советы и рекомендации:

  • Проводите проверку состояния амортизаторов (сохранности пыльника, буфера отбоя) через каждые 20 тысяч км, но не реже одного раза в год.
  • Заменяйте сразу оба амортизаторы на одной оси.
  • Меняйте амортизаторы на СТО. На многих моделях автомобилей для сжатия и фиксации пружины подвески при ее снятии требуется специальный инструмент (съемник). При неумелом обращении, пружина может «выстрелить».
  • Зимой из-за застывания амортизационной жидкости в первые полчаса движения старайтесь особенно щадить амортизаторы, пока масло не разогреется от перекачивания поршнем из одной полости цилиндра в другую. Начало движения (первые 5-10 минут) нужно осуществлять на небольшой скорости на первой-второй передаче.
  • При замене затягивайте амортизатор до упора только когда автомобиль стоит на колесах с нормальной нагрузкой.